Experimental Study of Phase Inversion Phenomena in Electrical Submersible Pumps Under Oil/Water Flow

Despite the common presence of water in oil production, just recently, the scientific community has devoted efforts to studying the influence of emulsion phenomena effects related to oil production using pumps. In the context of this study of phase inversion phenomena, the influence of viscosities and rotational speeds in electrical submersible pumps (ESPs) are evaluated as part of this effort. This study is aimed at investigating the influence of viscosity in phase inversion phenomena. An eight-stage ESP was tested with three different rotational speeds and two different oil viscosities for the best efficiency point (BEP) flow rates. Initially, the total flow rate was obtained in relation to BEP using ESP performance curves for pure oil at 52 cP and 298 cP and rotational speeds of 800 rpm, 1200 rpm, and 2400 rpm. The total flow rate was kept constant and the water cut was increased from 0 to 100%. The inversion phase phenomenon was detected by performance improvement when the water cut increased. The factors analyzed were the head and efficiency of the ESP as a function of the water cut. The phase inversion experimental data obtained in this study were compared with literature models for horizontal pipes. The results of this comparison presented satisfactory agreement. The phase inversion phenomena occur in all eight stages at the same time. Hysteresis was observed in ESPs for oil viscosity of 52 cP and rotating speed of 800 rpm and 1200 rpm.

 

Automatic Meshing for Multiscale Three-Dimensional Discrete Fracture Networks

Multi-scale finite element methods require special types of meshes, notably, those that relate coarse elements to sub-meshes contained by them. The geometric description of a Discrete Fracture Network (DFN) in this context, involves the ability of inserting multiple fractures in a pre-defined coarse mesh,
while building a sub-mesh around these fractures and tracking fine/coarse element relations. Main steps involve: locating intersections and refining elements at those points, building a data structure that associates each element of a fracture surface to the coarse volume that encloses it, and then generate a sub-mesh of fine elements around the fractures to fill these coarse elements, without altering originally
defined nodes in the coarse mesh. This work presents an approach for automatic finite element meshing
of fractured reservoirs suited to Multiscale Hybrid-Mixed methods (MHM) [1]. The code is written in
C++ and largely relies on two finite element libraries: NeoPZ [3] and Gmsh [2]. Starting with a coarse
mesh, fractures are entered as 3D polygons, built from their corner points, and inserted one-by-one. Intersections with one-dimensional elements are computed first and subsequently used to define the intersection with two-dimensional elements (faces). Triangles that result from refining faces to conform to the intersecting fractures are checked for quality, and those with bad aspect ratio (given a tolerance)
are coalesced, as fracture surface nodes are snapped into previously defined nodes. The resulting faces
are utilized to define volume shells that can be tetrahedralized using Constrained Delaunay algorithms
available in the Gmsh library. Element connectivity, transformations between parametric domains of
fine/coarse elements, and all other relevant finite element computations are implemented using NeoPZ. Results show that the proposed technique can efficiently construct adequate 3D meshes. While rely-ing on neighbourhood information and consistent element topologies available from NeoPZ’s geometric meshes, enables optimization of multiple algorithms of geometric search that would, otherwise, require a considerable amount of floating-point operations.

Experimental analysis on the behavior of water drops dispersed in oil within a centrifugal pump impeller

This paper aims to investigate the behavior of water drops in an oil continuous medium inside a centrifugal pump impeller working at eight operational conditions (up to 1200 rpm and 2.8 m³/h) with two-phase liquid-liquid flows. Water-in-oil dispersions were produced with low water fractions around 1% in volume, thus the dispersed phase became arranged as water drops. Experiments for pump performance and flow visualization were conducted using a high-speed camera and a pump prototype with a transparent shell. Flow images revealed that the large water drops usually deform, elongate, and break up into smaller ones, especially at high pump rotations and oil flow rates, while small water drops tend to keep their spherical geometry without deformations and fragmentations. A sample of drops were tracked and their equivalent diameters, residence times, and velocities were calculated. The tracking indicated that the water drops travel random trajectories in the channels, generally undergoing a deceleration along their pathway. Furthermore, the residence times and the average velocities of water drops strongly depend on the flow conditions. For the conditions tested, the water drops presented equivalent diameters between 0.1 and 6.0 mm, average velocities from 0.4 to 1.7 m/s, and residence times between 30 and 152 ms. For a more complete analysis, the results achieved in this study are constantly compared with results available in literature regarding oil drops in oil-in-water dispersions.

Experimental Study of Phase Inversion Phenomena in Electrical Submersible Pumps under Oil/Water Flow

by Natan Augusto Vieira Bulgarelli, Jorge Luiz Biazussi, William Monte Verde, Marcelo Souza de Castro, Antonio Carlos Bannwart, published at Journal of Offshore Mechanics and Arctic Engineering, Volume 142.4, 2020

Abstract

Despite the common presence of water in oil production, just recently, the scientific community has devoted efforts to studying the influence of emulsion phenomena effects related to oil production using pumps. In the context of this study of phase inversion phenomena, the influence of viscosities and rotational speeds in electrical submersible pumps (ESPs) are evaluated as part of this effort. This study is aimed at investigating the influence of viscosity in phase inversion phenomena. An eight-stage ESP was tested with three different rotational speeds and two different oil viscosities for the best efficiency point (BEP) flow rates. Initially, the total flow rate was obtained in relation to BEP using ESP performance curves for pure oil at 52 cP and 298 cP and rotational speeds of 800 rpm, 1200 rpm, and 2400 rpm. The total flow rate was kept constant and the water cut was increased from 0 to 100%. The inversion phase phenomenon was detected by performance improvement when the water cut increased. The factors analyzed were the head and efficiency of the ESP as a function of the water cut. The phase inversion experimental data obtained in this study were compared with literature models for horizontal pipes. The results of this comparison presented satisfactory agreement. The phase inversion phenomena occur in all eight stages at the same time. Hysteresis was observed in ESPs for oil viscosity of 52 cP and rotating speed of 800 rpm and 1200 rpm.

DOI: https://doi.org/10.1115/1.4045787

Access the full paper

Using reorderable matrices to compare risk curves of representative models in oil reservoir development and management activities

Methodologies of oil reservoir development and management demand the creation of a set of reservoir models that represents the uncertainties of a reservoir. This set of uncertainties is often simplified by the use of Representative Models (RMs), i.e., models that represent the full set. Comparison of risk curves (a.k.a. complementary cumulative distribution functions) of reservoir variables is an approach used for helping oil engineers to select a set of RMs. A typical comparison chart of a given variable of interest superposes two risk curves: one of the entire model set, and another from the set of RMs. The level of similarity between the curves in this chart indicates the representativeness of the set of RMs regarding the entire model set. A visualization with some of these charts may help to compare the representativeness of the set of RMs regarding more variables (reservoir properties, production data etc.) or distinct sets of RMs. However, this kind of chart is not enough to provide an overview of these comparisons if the number of variables or sets of RMs increase. This paper shows how the use of reorderable matrices, depicted as heatmaps, can provide an overview of this dataset that can be helpful to engineers to make decisions. We propose to represent the dissimilarity of pairs of risk curves instead of the curves themselves. This solution enables our visualization to increase the number of sets of RMs and the number of variables to represent. We show the usefulness of our proposal in three case studies of oil reservoir benchmarks, and discuss the pattern we found in these cases.

Conference highlights EPIC's potential for innovation in the energy sector

On November 7, 2019, Unicamp's news outlet featured an article on the 1st EPIC Conference on its homepage.

The opening panel of the conference included FEM professor and EPIC director Antonio Carlos Bannwart; Luiz Nunes from Fapesp; Ruben Schulkes from Equinor; Alfredo Renault from the National Agency for Petroleum, Natural Gas, and Biofuels (ANP); and Unicamp's rector, Marcelo Knobel.

Scholars emphasized the importance of the partnership between academia and industry, which benefits both by producing highly qualified professionals, developing applied research, and creating opportunities for knowledge exchange between different sectors and countries. 

Find out more at::

https://www.unicamp.br/unicamp/noticias/2019/11/07/conferencia-destaca-potencial-do-epic-para-inovacao-no-setor-energetico

 

Experimental Analysis on the Velocity of Oil Drops in Oil–Water Two-Phase Flows in Electrical Submersible Pump Impellers

The objective of this research is to investigate the velocity of oil drops within the impeller of an electrical submersible pump (ESP) working with oil-in-water dispersion flows at different operational conditions. An experimental study was conducted using an ESP prototype with a transparent shell designed to enable flow visualization within the impeller channels. The tests were performed at three rotational speeds, 600, 900, and 1200 rpm, for three water flow rates, 80%, 100%, and 120% of the best efficiency point (BEP). A high-speed camera (HSC) with a lighting set captured images of the oil-in-water dispersion at 1000 frames per second. The images observation suggests the presence of a turbulent flow in the impeller. The turbulence, associated with high rotation Reynolds numbers, causes the oil drops to become smaller as the impeller rotational speed and the water flow rate increase. Despite this rotating environment, the oil drops generally have a spherical shape. Regarding the kinematics, the images processing reveals that the velocity of oil drops has a magnitude around a unit of m/s. The velocity depends on the oil drop position in the channel: oil drops that stay close to a suction blade (SB) have significantly higher velocities than oil drops that stay close to a pressure blade (PB). Considering a complex flow with water velocity profiles and pressure gradients, the analysis of oil velocity curves indicates the occurrence of accelerations that may be caused by drag and pressure forces acting on the oil drops.

Experimental Investigation of Oil Drops Behavior in Dispersed Oil-Water Two-Phase Flow within a Centrifugal Pump Impeller

In oil production, one important artificial lift method involves the commonly used centrifugal pump. The use of this pump in the petroleum industry, however, is hindered by some unfavorable operational conditions. Operating centrifugal pumps with gas and viscous fluids, such as dispersions, may lead to a degradation of their performance. The objective of this paper is to analyze oil-water dispersions in a pump impeller, in order to investigate the behavior of oil drops, which may influence the pump working. Thus, experiments were carried out at different pump rotation speeds and water flow rates. Researchers used a facility with a pump prototype that enabled them to visualize the flow in all the impeller channels. Images, captured through a high-speed camera, revealed a unique flow pattern of oil drops dispersed in water. Processed with computer codes, the images indicated that the oil drops were, in general, spherical or elliptical, and only a few broke up in the impeller. The interaction with water caused the oil drops to rotate, deform, and deviate, thus moving in random paths. Size distributions suggested that the drops became smaller as the impeller rotation speed and water flow rate increased. This behavior was due to the turbulence-induced shear stress and kinetic energy. The oil drops’ equivalent diameters ranged from 0.1 to 6.0 mm; velocities took values measurable by units of m/s; accelerations reached hundreds of m/s2; and forces had magnitudes of thousandths of N. Researchers observed a clear dependence between flow conditions and drop dynamics. Carried by the water flow, the oil drops on the suction blade moved faster than those on the pressure blade of a channel. The drop dynamics were significantly influenced by the presence of adverse pressure gradients and water velocity fields.

Experimental and Numerical Study of Oil Drop Motion within an ESP Impeller

The Electrical Submersible Pump (ESP) is a multistage centrifugal pump used in the petroleum industry as an artificial lift method. The ESP usually works with the presence of two-phase liquid-liquid flows that constitute dispersions and emulsions, causing performance losses and operational problems. This research aims to investigate the behavior and evaluate the dynamics of individual oil drops in an oil-in-water dispersion within an ESP impeller. The study adopts experimental and numerical approaches. Initially, experiments were performed using an experimental facility with a high-speed camera and an ESP prototype working at 600 rpm and 900 rpm, for water flows around the Best Efficiency Point (BEP) and with the injection of oil drops at a low flow rate. The acquired images were processed, and a drop sample was tracked, enabling the analysis of the size, shape, path, velocity, and acceleration of the oil drops. Numerical simulations were executed in ANSYS® software to define relevant parameters related to water and oil drops, such as velocities, accelerations, forces, turbulent dissipation, and residence time. The images reveal a unique flow pattern of dispersed drops in a continuous water phase. The oil drops’ diameters vary from tenths of a millimeter to around 3 mm. The drops’ trajectories can be classified into three different regions within the impeller channels. The drops’ velocities stay in the order of 1 m/s, while accelerations can reach hundreds of m/s2. The velocity profiles show that the oil drops tend to decelerate during their trajectory, while the acceleration profiles suggest peaks at the channel inlet and outlet. High intense turbulence is present in the impeller entrance zone. The evaluation of the residence time and the particle Reynolds number suggest that smaller oil drops follow the water streamlines, while larger oil drops tend to be affected by external forces. The main forces that govern the oil drop motion are the drag, the pressure gradient, and the virtual mass forces. The force from the pressure gradient is tenfold greater than the force from the drag. The virtual mass effect is significant only in the impeller inlet. In general, in this research, numerical results show a satisfactory agreement with the experimental data.