by Luiz Pastre, Jorge Biazussi, William Monte Verde, Jean Marins, Aline Melchuna, Mark Cowie, Luis Vergara, Ivamberg Navarro, Daniel Lemos, Antonio Alfonzo, Leudy Ramos, Antonio Bannwart, presented at OTC2022, April 2022.
Abstract
Although being widely used as an artificial lift method for heavy oil field developments, Electrical Submersible Pump (ESP) system performance in high viscous applications is not fully understood. A miscomprehension of challenges and equipment performance in such conditions might lead to operation inefficiencies and equipment failures. This paper presents results of single-phase and multiphase tests performed by University of Campinas (UNICAMP). It also presents operation data, lessons learnt, and failure examples gathered over 10 years of ESP operation in Peregrino field which is a heavy oil, high viscous oilfield offshore Brazil operated by Equinor.
Affinity laws commonly used for ESP simulations don’t hold true for high viscosity applications. Hydraulic performance of centrifugal pumps is affected by fluid parameters like viscosity and density; operation parameters such as flow rate and rotational speed; and specific stage design characteristics. To determine degradation in head and efficiency as well as power requirement increase in viscous applications, Equinor performs one-phase high viscosity flow loop test to qualify each stage type prior to deployment in Peregrino field.
For the qualification of ESPs, single phase qualification tests are performed using mineral oil with viscosities specifically chosen to cover the viscosity range of the specific field. Each stage type is qualified using a prototype with reduced number of stages due to flow loop limitations. Qualification tests for the Peregrino field confirmed that affinity laws are not accurate for high viscous applications and provided important insights regarding pump performance that are used in equipment specification and system surveillance.
The UNICAMP research team has designed and performed multiphase flow tests to evaluate emulsion formation inside centrifugal pump stages and effective viscosity behavior. Phase inversion phenomenon investigation was also included in studies. Studies performed using a prototype stage allowed visualization and evaluation of oil drops dynamics inside the impeller in different rotational speeds. Two phase flow loop tests investigated the shear forces influence in effective viscosity inside pump stages and downstream pump discharge. Phase inversion phenomenon was also a point of great interest during the studies. Data gathered during lab tests was used to evaluate accuracy of mathematical models existing in the literature when a centrifugal pump is added to the system. Hysteresis effect associated to catastrophic phase inversion (CPI) was confirmed and replicated during flow loop tests. Such behavior can be related with operation parameters instabilities and equipment failures noticed in actual application in Peregrino field which are also presented in this paper.
Access the full paper.