5th EPIC Conference

EPIC would like to invite graduate students, researchers, and reservoir engineering professionals to the 5th. EPIC Conference, annual event to disseminate the center's ongoing research. The 5th. EPIC Conference will be on November 13th. to 14th 2023 at the auditorium of the Eldorado Research Institute, in Campinas – SP – Brazil.

For further information, check the Conference Program, available at:

Conference Program (soon)

We have a limited number of seats and registrations are opened until November 03rd. 2023. To register, please access:

Register now!

If you have any doubts, please contact us at epic@unicamp.br

Short Course: Ensemble based Decision Making in Reservoir Management and Field Development Planning

Short Course

Update (June 21st): instructions for the participants were sent to the e-mail address provided at registration. If you have not received this message, check your spam folder. For further inquiries, please reach us at epic@unicamp.br

EPIC invites graduate students, researchers, and reservoir engineering professionals to the short course entitled “Ensemble based Decision Making in Reservoir Management and Field Development Planning“, to be taught by Prof. Remus Gabriel Hanea, leading advisor on Reservoir Technology at Equinor (Norway), and Prof. Bogdan Sebacher, associated professor at the Military Technical Academy  of Bucharest (Romania).

The course will be offered in English, between June 27th and 29th, 2022, at the School of Mechanical Engineering (FEM) of the University of Campinas (UNICAMP), in Campinas, Brazil.

Prof. Remus Gabriel Hanea is the leading advisor on Reservoir Technology, Assisted History Matching and Optimization/Decision Making in the Subsurface Discipline Excellence department in Equinor. His background is in Applied Mathematics, and he has 15 years of experience in Uncertainty Quantification, Data Assimilation and Optimization, and Decision Making with applications in Atmospheric sciences, Hydrology and in various Energy domains (mainly O&G). He also has a part time professorship position at theUniversity of Stavanger (Norway), in the Department of Petroleum Engineering, in the group of Petroleum Geoscience Engineering. Remus’s main research topics are: Assisted History Matching and Robust Optimization for Reservoir Management, Value of Information, Decision and Risk Analysis and Geostatistics. Remus teaches a specialized course for PhD and MSc students on Inverse Modeling, Data Assimilation and Optimization with applications in Reservoir Management, and supervises MSc and PhD students.

Prof. Bogdan Sebacher is Associate Professor at the Military Technical Academy of Bucharest (Romania).

Course Syllabus

Day 1

(June 27th. 2022)

Introduction to Reservoir Management and Data Assimilation

Morning Session (9:00am to 12:00pm)

  • Introduction to Reservoir Management and Field Development Planning – basic notions
  • Introduction to Data Assimilation and Decision Making/Optimization – basic notions
  • Models, Data, Uncertainties
  • Bayes Theorem
  • Kalman Filter

Afternoon Session (2:00pm to 5:00pm)

  • From Ensemble Kalman Filter (EnKF) to Ensemble Smoother Multiple Data Assimilation (ES-MDA) – the journey
  • Pros and Cons and practical implementations (case studies)
  • Ensemble validation and analysis, Quality assurance and the definition of success

Day 2

(June 28th. 2022)

Facies modeling and estimation

Morning Session (9:00am to 12:00pm)

  • Pluri-Gaussian approach
  • Adaptive Pluri-Gaussian Simulation (APS)
  • Probability cubes for facies distributions – Seismic and log data information

Afternoon Session (2:00pm to 5:00pm)

  • Multipoint Geostatistics (MPS) approach
  • Parameterization and estimation
  • Machine learning approaches

Day 3

(June 29th. 2022)

Decision Making/Optimization under geological uncertainties

Morning Session (9:00am to 12:00pm)

  • Robust/Ensemble Optimization
  • Basic concepts
  • Ensemble and stochastic gradient optimization approaches
  • Practical Implementations
  • Way forward – Structured decision making approach

Flow visualization in centrifugal pumps: A review of methods and experimental studies

by Rodolfo Marcilli Perissinotto, William Monte Verde, Jorge Luiz Biazussi, Natan Augusto Vieira Bulgarelli, William Denner Pires Fonseca, Marcelo Souza de Castro, Erick de Moraes Franklin, Antonio Carlos Bannwart, published at Journal of Petroleum Science and Engineering Volume 203, August 2021, 108582


Methods for flow visualization have been decisive for the historical development of fluid mechanics. In recent years, technological advances in cameras, lasers, and other devices improved the accuracy and reliability of methods such as High-Speed Imaging (HSI) and Particle Image Velocimetry (PIV), which have become more efficient in visualizing complex transient flows. Thus, the study of centrifugal pumps now relies on experimental techniques that enable a quantitative characterization of single- and two-phase flows within impellers and diffusers. This is particularly important for oil production, which massively employs the so-called Electrical Submersible Pump (ESP), whose performance depends on the behavior of bubbles and drops inside its impellers. Visualization methods are frequently used to study gas-liquid flows in pumps; however, the visualization of liquid-liquid dispersions is complex and less common, with few publications available. Methods to characterize the motion of gas bubbles are often unsuitable for liquid drops, especially when these drops are arranged as emulsions. In this context, there is room to expand the use of visualization techniques to study liquid-liquid mixtures in pumps, in order to improve the comprehension of phenomena such as effective viscosity and phase inversion with focus on the proposition of mathematical models, for example. This is a main motivation for this paper, which presents a review of researches available in the literature on flow visualization in centrifugal pumps. A broad set of studies are reported to provide the reader with a complete summary of the main practices adopted and results achieved by scientists worldwide. The paper compares the methods, investigates their advantages and limitations, and suggests future studies that may complement the knowledge and fill the current gaps on the visualization of single-phase flows, gas-liquid, and liquid-liquid mixtures.

DOI: 10.1016/j.petrol.2021.108582

Acces the full paper

Disciplina de Pós-Graduação em Captura, Uso e Armazenamento de Carbono

O EPIC, convida todos para a aula inaugural da disciplina que oferecerá no primeiro semestre de 2021. O tema desta primeira aula será “Energy scenario, diversification and transition to a low carbon society”, que será ministrada por Rannfrid Skjervold, da Equinor, e Asgeir Tomasgard, da NTNU.

Esta aula inaugural acontecerá dia 18/03/2021, às 9hs (BRT). Mais informações podem ser obtidas no banner abaixo.

Experimental investigation on the performance of Electrical Submersible Pump (ESP) operating with unstable water/oil emulsions

by Natan Augusto Vieira Bulgarelli, Jorge Luiz Biazussi, William Monte Verde, Carlos Eduardo Perles, Marcelo Souza de Castro, Antonio Carlos Bannwart, published at Journal of Petroleum Science and Engineering, Volume 197, February 2021, 107900


Electrical Submersible Pump (ESP) is one of the most commonly used artificial lift methods in petroleum production, due to its capacity to operate in several conditions with two or three-phase flows. When the ESP operates with emulsion flow, its performance is degraded, and operational instabilities occur. Therefore, this paper aims to carefully investigate phase inversion and to present, by the first time, the  ffective viscosity of unstable mineral oil/water emulsions, both within the ESP. The first part of this work analyzes the phase inversion phenomenon for two oil types in three viscosities, five ESP rotational speeds, and three mixture flow rates. Logistic functions were fitted using the dimensionless head as a water cut function to determine the phase inversion within the ESP. The continuous phase inversion model, developed for emulsion pipe flow, did not present a satisfactory agreement to flow conditions tested. An indirect method to determine the emulsion effective viscosity within the ESP was proposed, which was obtained from the water/oil emulsion performance curves. The viscous performance data were used to determine the geometric coefficients of a dimensionless head empirical model for the tested ESP. Thus, the calculated values were compared with the effective viscosity obtained with oil and water emulsions, as well as the ESP performance, operating with emulsion and oil, which provides similar values for low rotational speeds. The different behavior of the effective viscosity between the pipeline flow and within the ESP was observed for water-in-oil emulsions and may be related to the high centrifugal field in the ESP.

DOI: 10.1016/j.petrol.2020.107900

Acces the full paper


Experimental analysis on the behavior of water drops dispersed in oil within a centrifugal pump impeller

by Rodolfo Marcilli Perissinotto, William Monte Verde, Carlos Eduardo Perles, Jorge Luiz Biazussi, Marcelo Souza de Castro, Antonio Carlos Bannwart, published at Experimental Thermal and Fluid Science, Volume 112, 1 April 2020, 109969.


This paper aims to investigate the behavior of water drops in an oil continuous medium inside a centrifugal pump impeller working at eight operational conditions (up to 1200 rpm and 2.8 m³/h) with two-phase liquid-liquid flows. Water-in-oil dispersions were produced with low water fractions around 1% in volume, thus the dispersed phase became arranged as water drops. Experiments for pump performance and flow visualization were conducted using a high-speed camera and a pump prototype with a transparent shell. Flow images revealed that the large water drops usually deform, elongate, and break up into smaller ones, especially at high pump rotations and oil flow rates, while small water drops tend to keep their spherical geometry without deformations and fragmentations. A sample of drops were tracked and their equivalent diameters, residence times, and velocities were calculated. The tracking indicated that the water drops travel random trajectories in the channels, generally undergoing a deceleration along their pathway. Furthermore, the residence times and the average velocities of water drops strongly depend on the flow conditions. For the conditions tested, the water drops presented equivalent diameters between 0.1 and 6.0 mm, average velocities from 0.4 to 1.7 m/s, and residence times between 30 and 152 ms. For a more complete analysis, the results achieved in this study are constantly compared with results available in literature regarding oil drops in oil-in-water dispersions.

DOI: 10.1016/j.expthermflusci.2019.109969

Access the full paper


Conference highlights EPIC's potential for innovation in the energy sector

The website of Unicamp linked on its main page, on 11/07/2019, an article about the 1st conference of the EPIC. The opening table was composed by the teacher from FEM and director of EPIC, Antonio Carlos Bannwart; Luiz Nunes, from Fapesp; Ruben Schulkes, from Equinor; Alfredo Renault, from National Agency for Petroleum, Natural Gas and Biofuels (ANP) and the rector from Unicamp, Marcelo Knobel.

See more at:



FAPESP and Equinor launch Petroleum Engineering Research Center at Unicamp

The inauguration of the Energy Production Innovation Center at Unicamp – EPIC was featured on the website of Inova Unicamp on 02/20/2019. The launch event took place on 02/19/2019, at the headquarters of FAPESP.

Lançamento Fapesp


See the link below for more details.



Opening of a research center on the sustainable use of oil injects R$ 25 million into Unicamp

O EPIC was news in the G1 on 02/19/2019. The article presents how the center was constituted, the partner entities (FAPESP, Equinor e Unicamp), and the form of financing. In addition, the article also explores the collaboration between the EPIC and CEPETRO and the scientific objectives of the center.

Cepetro area, at Unicamp — Photo: Antonio Scarpinetti / Unicamp

See more at: