Selection of Representative Scenarios Using Multiple Simulation Outputs for Robust Well Placement Optimization in Greenfields

by Seyed Kourosh Mahjour, Antonio Alberto Souza Santos, Susana Margarida da Graça Santos, Denis José Schiozer, published at Society of Petroleum Engineers, September 2021, SPE-206300-MS.


In greenfield projects, robust well placement optimization under different scenarios of uncertainty technically requires hundreds to thousands of evaluations to be processed by a flow simulator. However, the simulation process for so many evaluations can be computationally expensive. Hence, simulation runs are generally applied over a small subset of scenarios called representative scenarios (RS) approximately showing the statistical features of the full ensemble. In this work, we evaluated two workflows for robust well placement optimization using the selection of (1) representative geostatistical realizations (RGR) under geological uncertainties (Workflow A), and (2) representative (simulation) models (RM) under the combination of geological and reservoir (dynamic) uncertainties (Workflow B). In both workflows, an existing RS selection technique was used by measuring the mismatches between the cumulative distribution
of multiple simulation outputs from the subset and the full ensemble. We applied the Iterative Discretized Latin Hypercube (IDLHC) to optimize the well placements using the RS sets selected from each workflow and maximizing the expected monetary value (EMV) as the objective function. We evaluated the workflows in terms of (1) representativeness of the RS in different production strategies, (2) quality of the defined robust strategies, and (3) computational costs. To obtain and validate the results, we employed the synthetic UNISIM-II-D-BO benchmark case with uncertain variables and the reference fine- grid model, UNISIM-II-R, which works as a real case. This work investigated the overall impacts of the robust well placement optimization workflows considering uncertain scenarios and application on the reference model. Additionally, we highlighted and evaluated the importance of geological and dynamic uncertainties in the RS selection for efficient robust well placement optimization.


Access the full paper.