Methodology to optimize the WAG-CO2 injection strategy and injection well ICV control rules in light-oil carbonate reservoirs with pre-salt features

Methodology to optimize the WAG-CO2 injection strategy and injection well ICV control rules in light-oil carbonate reservoirs with pre-salt features

Resumo

by Guilherme Nunes Lopes, Susana Margarida da Graça Santos, Denis José Schiozer, Randerson Araújo de Lemos, presented at Rio Oil & Gas Expo and Conference 2022, September 2022.

Abstract

Reservoirs of the pre-salt contain a significate amount of CO2 that should not be emitted into the atmosphere. The WAG-CO2 injection process is an alternative to give an ecologically sustainable destination to the CO2 and can increase oil recovery in the pre-salt fields. The optimization of the WAG-CO2 injection scheme, such as cycle duration, can significantly affect its performance in terms of oil recovery and net present value (NPV), raising the need for good optimization methods. In the face of the high uncertainty that typically exists in these scenarios, Inflow Control Valves (ICV) provide operational flexibility to the production strategy, allowing to manage field injection/production more efficiently. This work proposes a methodology to optimize the injection well control variables since the early stages of field development that considers the condition of total gas reinjection (CO2 and natural gas). The methodology optimizes the
opening phase that each well will start injecting during the ramp-up period of the platform, the cycle duration and the phase, gas or water, that each well will inject in the first WAG-CO 2 bank, and the injection wells ICV control rules. The developed methodology was applied to a benchmark case called UNISIM-II-D, based on Brazilian pre-salt trends. Compared to a based injection strategy, the methodology proved capable of improving field management at minimum added cost, increasing oil recovery and the net present value.