Influence of integration between reservoir and production systems considering polymer injection
Resumo
In this work we evaluate the impact of integration between reservoir and production systems considering scenarios of polymer injection in a heavy-oil reservoir. We used a reservoir model named EPIC001 with characteristics from a Brazilian Sandstone offshore heavy-oil field. A Black-oil fluid model was used, considering heavy viscous oil (13° API). The production system is composed by 4 producers and 3 injectors wells. To integrate reservoir with production system, we use decoupled integration approach using vertical flow performance tables. Additionally, we propose an alternative approach to estimate a revised BHP for the integration. Simulation using the decoupled integration approach yields lower production compared to non-integrated scenarios based on initial conditions. The reduction was 22% for water injection and 41% for polymer injection, at concentration of 2.49 kg/m3. Sensitivity analysis of polymer concentration revealed that 1 kg/m³ was the most favorable concentration for the non-integrated case and 0.5 kg/m3 considering the integration. Revised BHPs approach lead to a production compatible with integrated case with differences reaching 2.46%. The results presented in this paper provide new insights into the importance of considering integration for accurate prediction, particularly in scenarios involving polymer injection in a heavy-oil reservoir. We also show that the best polymer injection concentration can change depending on the modelling approach and the revised BHP approach could be an alternative to integration.
Autores EPIC
Outros Autores
João Carlos von Hohendorff Filho.