Analysis of different objective functions in petroleum field development optimization
Abstract
Oilfield development optimization plays a vital role in maximizing the potential of hydrocarbon reservoirs. Decision-making in this complex domain can rely on various objective functions, including net present value (NPV), expected monetary value (EMV), cumulative oil production (COP), cumulative gas production (CGP), cumulative water production (CWP), project costs, and risks. However, EMV is often the main function when optimization is performed under uncertainty. The behavior and performance of different objective functions has been investigated in this paper, when EMV is the primary criterion for optimization under reservoir and economic uncertainty. One of the goals of this study is to provide insights into the advantages and limitations of employing EMV as the sole objective function in oil field development decision-making. The designed optimization problem included sequential optimization of design variables including well positions, well quantity, well type, platform capacity, and internal control valve placements. A comparative analysis is presented, contrasting the outcomes obtained from optimizing the EMV-based objective function against traditional objective functions. The study underscores the importance of incorporating multiple objective functions alongside EMV to guide decision-making in oilfield development. Potential benefits in minimizing CGP and CWP are revealed, aiding in the mitigation of environmental impact and optimization of resource utilization. A strong correlation between EMV and COP is identified, highlighting EMV’s role in improving COP and RF.
EPIC Authors
Other Authors
Auref Rostamian, Abouzar Mirzaei-Paiaman