Reservoir Management

A machine learning-assisted decision-making methodology based on simplex weight generation for non-dominated alternative selection

Abstract

In multiobjective decision-making problems, it is common to encounter nondominated alternatives. In these situations, the decision-making process becomes complex, as each alternative offers better outcomes for some objectives and worse outcomes for others simultaneously. However, DMs still must choose a single alternative that provides an acceptable balance between the conflicting objectives, which can become exceedingly challenging. To address this scenario, our work introduces a decision-making framework aimed at supporting such decisions. Our proposed framework draws upon concepts from the field of Multi-Criteria Decision Making, and combines a novel simplex-like weight generation method with expert insights and machine learning data-driven procedures to establish an intuitive methodology that empowers DMs to select a single alternative from a range of alternatives. In this paper, we illustrate the effectiveness of our methodology through an example and two real-world decision cases from the oil and gas industry, each involving 128 alternatives and five distinct objectives.